
Morgan Murrah - 09/05/2024

Web Components
A look at the Apple Pay Button and our own BC logo as a web
component

Introduction
Morgan Murrah

• Working in technology and a lot on the
web for about 8 years, Lived in Bellingham
since 2018

• Atlanta GA (1989-1998, 2016-2017) &
Asheville NC (2017) before that.

• Graduated law school and lived in New
Zealand before that (1998-2016)

• Changed career in 2016 into technology

Introduction cont. — Career highlights after changing careers:

• 4 years at a startup as a software developer on a team of 3-4 for a
small company, LAMP stack

• 10 months AMP HTML Development for a large corporate client

• 1.5 years and counting as a Digital Content Manager working for
some big clients

• Credited volunteer at the Worldwide Web Consortium (W3C) 6+
times on a specification, the Web Sustainability Guidelines

• Really appreciate Bellingham Codes (has helped me find my last
two jobs)

Thank you’s/Credits for inspiration
There are a few to name drop….

• Scott Jehl, Engineer at Squarespace and co-creator of WebPageTest, also
creator of the course(s) Web Components Demystified and Lightning-fast
Web Performance

• Alex Russell, Partner Product Manager on Microsoft Edge

• Tantek Çelik, web standards lead at Mozilla

• Katrina Grace, independent developer who made Facet the library for making
Web Components with mostly HTML that got me into this topic.  

All contributed a little to this talk and a lot to web components

https://github.com/kgscialdone/facet

What does that even mean?

Components
There are a bunch of things called components

The Wikipedia article looks amateur?

Components
Components

Components

Components

Components

Components

Components

By Web Components, we mean this.  
A specific set of features that work together that now enjoy strong browser support.

Useful background — Stuff that comes with the browser
Going to try and explain importance of things as we go even if we don’t fully cover these…

• HTML - Hyper Text Markup Language

• The building block elements of the page embedded in
the browser.

CSS
Cascading Style Sheets

• Stylesheets. Controls presentation and behavior of
elements. Background colors and fonts and way more.

• Features like variables, functions, pretty amazing stuff
can be done with just CSS.

• Is a very highly optimized platform for some features

JavaScript - huge topic to try and summarize

• Very important programming language embedded in the browser…

• Not required for web pages to work but basically to be expected
on most all interactive web pages. Millions of dollars and whole
careers made on JavaScript.

• A lot of web pages wont work without JS enabled.

• Check out the HTTP Almanac — great statistical info on growth of
JavaScript and commentary

More useful background - DOM

• Document Object Model (DOM) — connects web pages to scripts
or programming languages by representing the structure of a
document—such as the HTML representing a web page—in
memory.

• Essentially makes the code into the page “alive” by creating a tree
structure that allows for programs to access it, traverse it,
manipulate it with JavaScript usually.

• This exists on every web page opened in a browser

Preface
Focusing on the Why, with a little What and How

• Web Components are in production use out there in some interesting places.

• Adobe Photoshop for the Web - Extensive use of web components in UI, menus
and toolbars and more.

• SpaceX - Chromium Base UI used by astronauts in space using web components

• MSFT Edge - Incrementally replacing React contained in Surface UI with Web
Components

• GitHub - uses a bunch of them

• Apple Pay Button, discussed more later, a durable Web Component intended to
work in a wide variety of environments.

What Web Components are not…

• Not a library (although there are many libraries). Some argument whether
libraries are necessary to make them usable and useful especially pre-
consistent browser support.

• Not a set of particular components (although many sets of components out
there).

• Not a startup company or vendor product (although some vendors have
heavily adopted web components — See Web Almanac)

• Some contrast made with React components which work differently generally
but React also works with Web Component’s to some degree (more later)

What are web components?
Web Components = 3 main things… not just one thing

1. Custom Elements

• <my-element></my-element>. Defined in JavaScript by extending the
HTMLElement Class. Within some constraints name it what you want!

2. HTML Templates

• <template></template> —Snippets of HTML hidden by default for
reuse. (Won’t discuss much, not always necessary, but v. Useful)

3. Shadow Document Object Model

• Lots to potentially talk about— Shadow DOM allows for encapsulation.

Built-in vs. Custom Elements

• Built-ins are the elements we ‘know and love’ built into the browser—
many of you will recognize some elements.

• Built-ins usually come packaged with ‘user agent styles’ but they can
be restyled almost completely. Built-ins have some semantic meaning
that can be important for things like accessibility out of the box.

• <p></p> tags are intended for paragraphs.

• <button></button> is intended for a button.

• There are around 150ish built-ins.

Built-in Elements w/ Shadow Document Object Model

• Fun Note/preview: Some Built-in elements already in browsers have features
similar to web components and use the Shadow Document Object Model.

• For example, the <details><summary></summary></details> element combo
has shadow root “out of the box” by default i.e (user-agent) shadow-root.

Built-in and Custom Elements
Both fully fledged HTMLElements!

• Custom elements are what we define and register with JavaScript
into the browser, in a process defined by the HTML Spec. As we will
see, they are full featured HTMLElements.

•

• Naming convention, a letter or a word and a dash, i.e `a-` or `b-c` or `my-element`. 
 https://html.spec.whatwg.org/#valid-custom-element-name

https://html.spec.whatwg.org/#valid-custom-element-name

Custom Elements: Features and constraints
• Follow HTML Rules to be treated like a full HTMLelement !

• Example. element should not contain non children elements, if
making a list item web component needs to be inserted within a `li` tag to
comply

• Wrong:

• <list-item-component></list-item-component>

• Right:

• <list-item-component></list-item-component>

• Cant be void elements i.e Cannot do <my-custom-element /> only

Important tip re “Custom Built-ins”

• Avoid “Custom Built-ins” if you want Safari support

• Example Custom Built in `<p is=“example-defined-element”></p>`

• MDN not completely clear on this point weirdly enough so important
to stress, its arguably a dead end.

These elements you are about to see are full HTML Elements

class extends HTMLElement {

Prepare yourself.

<b-c></b-c>
https://bc-web-component.netlify.app/

&&

<apple-pay-button></apple-pay-button>

DEMO TIME

https://bc-web-component.netlify.app/

Features of Apple Pay Button Web Component

• Features of Apple Pay - Demo https://
applepaydemo.apple.com/

• Display Apple Pay Button using JavaScript https://
developer.apple.com/documentation/apple_pay_on_the_web/
displaying_apple_pay_buttons_using_javascript

• See Apple’s Human Interface Guidelines: https://
developer.apple.com/design/human-interface-guidelines/
apple-pay#Using-Apple-Pay-buttons

https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://applepaydemo.apple.com/
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/documentation/apple_pay_on_the_web/displaying_apple_pay_buttons_using_javascript
https://developer.apple.com/design/human-interface-guidelines/apple-pay#Using-Apple-Pay-buttons
https://developer.apple.com/design/human-interface-guidelines/apple-pay#Using-Apple-Pay-buttons
https://developer.apple.com/design/human-interface-guidelines/apple-pay#Using-Apple-Pay-buttons

Observations
• Simplicity of installation, ubiquity of use, practical need and want for some people.

Ctrl+C, Ctrl+V, Get closer to being paid.

• Small footprint. Not very big at all.

• Apple exerts control over behavior and markup. Vitally important to brand integrity.

• Guard Rails (‘visible but protected’). Limited ability to change style by developer and a
great number of pre-defined attribute options from the SDK. Shadow DOM used to set
important styles hidden from rest of page, complex SVG markup — too much to copy
and paste and trust…

• Guard Barriers: Buttons hidden and in disabled states if not enabled correctly with SDK.

• Script tag doing work for localization, security tokens and licensing. Doing some heavy
lifting!

Questions /
 Interactive code session

RE what Frameworks work better or worse with web components
https://custom-elements-everywhere.com/

https://custom-elements-everywhere.com/

Will share slides and links on Slack eventually

Thank you!

